Chapter 1. Forward Closure Assembly

1-1. Apply a light coat of Synco™ Super Lube™ or other grease to all threads and all 0-rings. This will facilitate assembly and prevents the threads from seizing.

1-2. **Fig.-1:** Chamfer both inner edges of the delay insulator with your fingernail. Assemble the RMS-Plus delay element, delay insulator, aft delay spacer and delay o-ring as shown. **NOTE:** It is not necessary to tape the delay element or delay insulator, the hot gas seal is provided by the delay o-ring alone.

1-3. **Fig.-2:** Insert the forward delay spacer (1-1/8” O.D. neoprene washer) into the delay cavity until it is seated against the forward end of the cavity. Apply a light film of grease to the inner circumference of the delay cavity (but not the forward end of the cavity).

1-4. **Fig.-3:** Insert the delay charge assembly shown in Fig.-1 into the delay cavity, o-ring end first, until it is seated against the forward delay spacer. **NOTES:** When using a plugged forward closure ONLY, fill the opening in the forward delay spacer with grease prior to installing the delay charge assembly, and install the delay charge components in this order: Forward delay spacer, delay o-ring, delay element, delay insulator and aft delay spacer.

Chapter 2. Case Assembly

2-1. **Fig.-4:** Place the greased nozzle (1/16” thick X 1” O.D.) o-ring into the nozzle well of the small nozzle aft closure.

2-2. **Fig.-5:** Insert the nozzle into the aft closure and press firmly until it is seated against the nozzle o-ring.

2-3. **Fig.-6:** Insert the propellant grain into the liner.

2-4. **Fig.-7:** Insert the aft closure assembly into the motor case. **NOTE:** A light coat of grease on the outside surface of the liner will facilitate installation and casing cleanup after motor firing.

2-5. **Fig.-8:** Place the aft insulator (2” O.D. washer) into the motor case until it is seated against the end of the liner.

2-6. **Fig.-8:** Place the greased aft (1/8” thick X 2” O.D.) o-ring into the case, seated against the aft insulator.

2-7. **Fig.-9:** Thread the aft closure assembly into the motor case by hand until about 1/16” gap remains between the case and the closure. **NOTE:** Final tightening will be done after the other motor components are loaded into the case.

2-8. **Fig.-10:** Place the forward insulator (2” O.D. washer) into the motor case until it is seated against the end of the liner.

2-9. **Fig.-10:** Place the greased forward (1/8” thick X 2” O.D.) o-ring into the case, seated against the forward insulator.

2-10. **Fig.-11:** With the motor case held in a horizontal position, thread the completed forward closure assembly into the open end of the motor case by hand until it is seated against the case.

2-11. Finish tightening the aft closure by hand until it is seated against the case. **NOTE:** There will be some resistance to threading in the closure during the last 1/32” to 1/16” of travel. It is normal if a slight gap remains between the closure and the case after tightening and the grain rattle slightly inside the liner.

Chapter 3. Ejection Charge Installation

3-1. **Fig.-12:** Thoroughly clean the outside of the motor of any grease or other residue. Dispense enough ejection charge (FFFFG black powder) into the ejection charge well of the forward closure to fill the well approximately 3/4 full. **NOTE:** For 6” and larger diameter rockets, fill the well completely.
3-2. Fig.-13: Apply the ejection charge cap (adhesive paper disk) to the center of the end of the forward closure. With the motor held in a NOZZLE DOWN position, gently shake the motor to set the ejection charge into the cavity above the delay element.

4-1. Fig.-14: Insert the coated end of a FirstFire™, Firestar™ or other igniter through the center nozzle throat until it stops against the delay charge element.

4-2. Secure the igniter to the nozzle with a piece of masking tape.

4-3. Install the rocket into the rocket's motor mount tube. Ensure that the motor is securely retained in the rocket by using positive mechanical means to prevent it from being ejected during recovery system deployment.

4-4. Prepare the rocket's recovery system and then launch the rocket in accordance with the Tripoli Rocketry Association (TRA) Safety Code and National Fire Protection Association (NFPA) Code 1127.

Chapter 5. Post-Recovery Cleanup

NOTE: Perform motor clean-up as soon as possible after motor firing. Propellant and delay charge residues become difficult to remove after 24 hours and can lead to corrosion of the metal parts. Place the spent motor components in the reload kit plastic bag and dispose of properly.

5-1. After the motor has cooled down, unthread and remove the forward and aft closures.

5-2. Remove the delay charge assembly components from the forward closure and discard. Using wet wipes or damp paper towels, remove all delay charge and propellant residue from the closures. WARNING: FUEL TO COMPLETELY REMOVE DELAY CHARGE RESIDUE FROM THE INSIDE OF THE FORWARD CLOSURE CAN LEAD TO GAS LEAKAGE ON A SUBSEQUENT FLIGHT AND DAMAGE TO YOUR RMS MOTOR FORWARD CLOSURE AND ROCKET VEHICLE. NOTE: Use of a plugged forward closure will eliminate the possibility of this failure mode.

5-3. Remove and discard the forward and aft o-rings from the motor case. Remove the liner, forward insulator, nozzle and liner o-ring from the casing by pushing on the nozzle end and discard. Using wet wipes or damp paper towels, wipe the inside of the casing to remove all propellant residue.

5-4. Apply a light coat of grease to all threads and the inside of the motor case. Reassemble metal parts and store motor in a dry place.

Chapter 6. First Aid

For a minor burn, apply a burn ointment. For a severe burn, immerse the burned area in ice water at once and see a physician as quickly as possible. In the unlikely event of oral ingestion of the propellant, induce vomiting and see a physician as quickly as possible. The AeroTech/RCS composite propellant consists primarily of ammonium perchlorate and a rubber-like plastic elastomer.

Chapter 7. Disposal

Damaged or defective reload kits should be returned to RCS.

Chapter 8. Fire Safety

Tests show that the pyrotechnic components of RMS™ reload kits will not explode in fires and normally will not ignite unless subjected to direct flame and then will burn slowly. Use water to fight any fires in which AeroTech/RCS RMS™ reload kit pyrotechnic components become involved. Direct the water at the AeroTech/RCS RMS™ reload kit pyrotechnic components to keep them below their 550 deg. F autoignition temperature. Foam and carbon dioxide fire extinguishers will NOT extinguish burning propellants of the type used in RMS™ reload kit pyrotechnic components. Keep reload kit pyrotechnic components away from flames, sources of heat and flammable materials.

Disposal and Warranty

NOTE: As we cannot control the storage and use of our products, once sold we cannot assume any responsibility for product storage, transportation or usage. RCS shall not be held responsible for any personal injury or property damage resulting from the handling, storage or use of our product. The buyer assumes all risks and liabilities therefrom and accepts and uses AeroTech/RCS products on these conditions. No warranty either expressed or implied is made regarding AeroTech/RCS products, except for replacement or repair, at RCS’s option, of those products which are proven to be defective in manufacture within one year from the date of original purchase. For repair or replacement under this warranty, please contact RCS. Proof of purchase will be required. Note: Your state may provide additional rights not covered by this warranty.

Chapter 3. Ejection Charge Installation (Cont’d)

Typical Time-Thrust Curves:

THIS PACKAGE CONTAINS ONE RMS-PLUS™ RELOAD KIT:

☐ I115W-M ☐ I229T-M ☐ I117FJ-M ☐ I215R-M

NOTE: This reload kit is sold in a "medium" delay configuration ONLY. For other delays, use one of the appropriate AeroTech Reload Delay Kits (RDK’s) for the delay time desired. Please refer to the RDK cross-reference list on back of the reload kit header card for proper RDK selection.

The reload kits shown above are ONLY for use in AeroTech/RCS, Dr. Rocket™ or Rouse-Tech™ RMS-54/426 high-power motors.

RMS-54/426 SMALL NOZZLE RELOAD KIT DATA

<table>
<thead>
<tr>
<th>Hardware Design</th>
<th>Performance Design</th>
<th>Total Impulse (Typ.)</th>
<th>Propellant Wt.</th>
<th>Loaded Motor Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS™-54/426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I115W</td>
<td>412 N-sec</td>
<td>219 g (0.482 lb)</td>
<td>545 g (1.20 lb)</td>
<td></td>
</tr>
<tr>
<td>I229T</td>
<td>407 N-sec</td>
<td>196 g (0.432 lb)</td>
<td>514 g (1.13 lb)</td>
<td></td>
</tr>
<tr>
<td>I117FJ</td>
<td>361 N-sec</td>
<td>243 g (0.535 lb)</td>
<td>566 g (1.25 lb)</td>
<td></td>
</tr>
<tr>
<td>I215R</td>
<td>399 N-sec</td>
<td>208 g (0.458 lb)</td>
<td>527 g (1.16 lb)</td>
<td></td>
</tr>
</tbody>
</table>

RMS-54/426 HARDWARE DATA

<table>
<thead>
<tr>
<th>Hardware Designation</th>
<th>Motor Diameter</th>
<th>Motor Length</th>
<th>Hardware Weight</th>
<th>Reloads Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS™-54/426</td>
<td>2.125" (54mm)</td>
<td>6.17"</td>
<td>218 g (0.480 lb)</td>
<td>I115W, I229T, I117FJ, I215R</td>
</tr>
</tbody>
</table>

NOTE: Motor lengths are measured from end of aft closure to end of forward closure.

NOTE: SALE TO PERSONS UNDER 18 YEARS OF AGE PROHIBITED BY FEDERAL LAW. WARNING-FLAMMABLE: Read Instructions Before Use. KEEP OUT OF REACH OF CHILDREN. FOR USE ONLY BY CERTIFIED HIGH-POWER USERS 18 YEARS OF AGE OR OLDER. DO NOT SMOKE when loading these motors or use in the vicinity of open flames.